Este curso está diseñado para científicos de datos con conocimientos existentes de Python y marcos de aprendizaje automático como Scikit-Learn, PyTorch y Tensorflow, que desean crear y operar soluciones de aprendizaje automático en la nube.
Aprenda a operar soluciones de aprendizaje automático a escala de la nube con Azure Machine Learning. Este curso le enseña a aprovechar su conocimiento existente de Python y el aprendizaje automático para administrar la ingestión y preparación de datos, el entrenamiento y la implementación de modelos y el monitoreo de la solución de aprendizaje automático en Microsoft Azure.
Los científicos de datos de Azure exitosos comienzan este rol con un conocimiento fundamental de los conceptos de computación en la nube y experiencia en ciencia de datos general y herramientas y técnicas de aprendizaje automático.
Específicamente:
Para adquirir estos requisitos previos, realice la siguiente formación gratuita en línea antes de asistir al curso:
Si es completamente nuevo en la ciencia de datos y el aprendizaje automático, primero complete Microsoft Azure AI Fundamentals .
In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace.
This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume.
In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models.
Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments.
One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs.
Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module.
Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing.
By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data.
Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions.
After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data.
Preguntas frecuentes
El precio de los cursos de Excel varía según el nivel. Preguntanos y con gusto te asesoramos.
Para darte mayor información por favor llámanos al 4422150021 o dejanos un WhatsApp 4421817545
Del Mesón 186-Int 12, Col del Prado, 76030 Santiago de Querétaro, Qro.
Estamos junto al edificio de Telmex de Tecnológico a una cuadra de Zaragoza. Puedes estacionarte junto al edificio Tec100 / Nippo en una explanada grande, es una opción muy económica.
Es correcto, al finalizar el curso se entrega una constancia certificada por Executrain, que te ayudará a demostrar tus habilidades.
Claro, en Executrain contamos con más de 30 años de experiencia brindando servicios de capacitación y consultoría a empresas en el Bajío. Puedes buscarnos en Google como Executrain Querétaro para consultar las recomendaciones de los alumnos.
SI claro, solo envía tu constancia de situación fiscal y con gusto te facturamos.
Te ofrecemos una gran cantidad de opciones de certificación, tanto la capacitación como los exámenes pues somos Centro VUE.